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Abstract. In order to further enhance the computational efficiency and appli-
cation scope of the bilinear functional links neural networks (BFLNN) filter, a
pipelined BFLNN (PBFLNN) filter has been developed in this paper. The idea
of the method is to divide the complex BFLNN structure into multiple simple
BFLNN modules (with a smaller memory-length) and cascade connection in a
pipelined fashion. Thanks to the simultaneous processing and the nested non-
linearity of the modules, the PBFLNN achieves a significant improvement in
computation without degrading its performance. The simulation results have
demonstrated the effectiveness of the proposed method and the potentials of the
PBFLNN filter in many different applications.

Keywords: Pipelined � Generalized FLNN � Nonlinear adaptive filtering

1 Introduction

Many practical systems (such as system identification, signal prediction, channel
equalization, and echo and noise cancelation,…) may contain nonlinearity. The linear
adaptation technique cannot model well enough because of the nonlinear nature of
these systems [1]. To overcome this problem, many new classes of nonlinear filters are
based on neural networks (NNs) and truncated Volterra series (VFs) has been devel-
oped [1, 2]. However, they also reveal many disadvantages such as complex archi-
tecture and heavy computing burden in their implementation [3, 4].

It is well known that the FLNN has been proposed to replace the multilayer
artificial neural network (MLANN) in some simple nonlinear applications because it
has a single layer structure, low computational complexity, and the simple learning rule
[4]. It has been successfully applied in other areas of nonlinear filtering including
nonlinear dynamic systems identification, channel equalization, active noise control,
nonlinear acoustic echo cancellation [4–8]. However, the performance of the FLNN-
based model may be significantly impaired when faced with systems containing strong
nonlinear distortion. As pointed out in [9], the main reason may be that the basic
functions of FLNN lack the cross-terms (for example x nð Þ � x n� 1ð Þ;
x n� 1ð Þ � x n� 2ð Þ; . . .. To mitigate this disadvantage, some studies have added
appropriate cross-terms into the conventional FLNN structure [9, 10]. Research results
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in [9, 10] indicate that these new models outperform the Volterra-based model in the
noise control application.

On the other hand, in order to increase the computational efficiency for recurrent
neural networks (RNN), a pipelined RNN (RNN) structure was developed in a speech
predictor [11]. The benefits of pipelined architecture make the nonlinear predictor
significantly reducing the total computational of recurrent neural networks (RNN).
Following this study, many computational efficiency systems using pipeline architec-
ture have been developed and successfully applied for speech signal prediction [12],
channel equalization [13].

In order to be able to model certain nonlinear systems well enough, the BFLNN
filter needs to be designed with a sufficiently large memory length. However, this also
leads to the computational complexity of BFLNN becoming quite heavy. Inspired by
efficient pipelined architecture, a pipelined BFLNN (PBFLNN) filter is proposed in this
paper. In this method, a complex BFLNN structure (contains many cross-terms) is
divided into several simple small-scale BFLNN modules (smaller memory-length,
contains less than cross-terms) and cascaded in a pipelined parallel fashion. Thanks to
the parallel processing of small-scale modules, its total computational efficiency is
significantly improved.

2 Nonlinear Adaptive PBFLNN Filter

The PBFLNN Structure: The proposed PBFLNN structure consists of simple small-
scale BFLNN modules connected in a pipelined fashion. In addition, to ensure the
overall output is a global estimate, the outputs of each module are filtered through a
conventional transversal filter. The design of the PBFLNN is illustrated in Fig. 1.

The simple BFLNN modules are identical in design (i.e. the parameters selected for
the external signal input and the cross-terms are the same). Thus, the modules have the
same synaptic weight matrix. As designed, it is easy to see that the input to each
module consists of two types of signals: one of them is the external signal and the other
is the output signal of the previous module.

Suppose we define N external input signals of the ith module as

XEi nð Þ ¼ ½x n� ið Þ; x n� i� 1ð Þ; :::; x n� i� Nþ 1ð Þ�T ð1Þ

Hence, the input signal of the ith module is

Xi nð Þ ¼ XT
Ei nð Þ;Ui nð Þ� �T¼ ½x n� ið Þ; x n� i� 1ð Þ; :::; x n� i� N þð

1Þ;Ui nð Þ�T ; i ¼ 1; :::;M
ð2Þ

where Ui nð Þ ¼ yiþ 1 nð Þ when the module differs from the Mth module;
Ui nð Þ ¼ yM n� 1ð Þ, when the module is the Mth module.

Since each module is a BFLNN structure, the input signal is expanded to
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XfiðnÞ ¼ Xf 1Ti ðnÞ; Xf 2Ti ðnÞ; � � � ; XfVT
i ðnÞ

� �T ð3Þ

where Vi = (6 + 4k) is the number of channels of the ith module, and k is the cross-
term selection parameter.

Based on the ideal of the BFLNN filter (refer to [10]), the signals for each channel
Xf 1i nð Þ;Xf 2i nð Þ; . . .;XfVi nð Þð Þ of the ith module can be expressed as follows

Xf 1i nð Þ ¼ x n� ið Þ; x n� i� 1ð Þ; :::x n� i� Nþ 1ð Þ;Ui nð Þ½ �T ð4Þ

Xf 2i nð Þ ¼ cosðpx n� ið ÞÞ; :::cosðpx n� i� N þ 1ð ÞÞ; cosðpUi nð ÞÞ½ �T ð5Þ

Xf 3i nð Þ ¼ sinðpx n� ið ÞÞ; :::sinðpx n� i� Nþ 1ð ÞÞ; sinðpUi nð ÞÞ½ �T ð6Þ

Xf 4i nð Þ ¼ y n� i� 1ð Þ; y n� i� 2ð Þ; . . .y n� i� Npy
� �� �T ð7Þ

Xf 5i nð Þ ¼ y n� i� 1ð Þcosðpx n� ið ÞÞ; y n� i� 2ð Þcosðpx n� i�ð½
1ÞÞ; :::; y n� i� kð Þcosðpx n� kþ 1ð ÞÞ�T ð8Þ

Xf 6i nð Þ ¼ y n� i� 1ð Þsinðpx n� ið ÞÞ; y n� i� 2ð Þsinðpx n� i�ð½
1ÞÞ; :::; y n� i� kð Þsinðpx n� kþ 1ð ÞÞ�T ð9Þ

..

. ¼ ..
.

Xf 2kþ 5ð Þi nð Þ ¼ x n� i� 1ð Þcosðpx n� ið ÞÞ; . . .; x n� i� kð Þcosðpx n�ð½
i� kþ 1ÞÞ;Ui nð Þ cosðpx n� i� kð ÞÞ�T

ð10Þ

Xf ð2kþ 6Þi nð Þ ¼ x n� i� 1ð Þsinðpx n� ið ÞÞ; . . .; x n� i� kð Þsinðpx n�ð½
i� kþ 1ÞÞ;Ui nð Þsinðpx n� i� kð ÞÞ�T ð11Þ

Fig. 1. The proposed nonlinear adaptive PBFLNN filter
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..

. ¼ ..
.

XfV � 1i nð Þ ¼ Ui nð Þcosðpx n� ið ÞÞ½ �T
ð12Þ

XfVi nð Þ ¼ Ui nð Þsinðpx n� ið ÞÞ½ �T ð13Þ

As analyzed above, the synaptic weight vector of each module is designed similarly.
We, therefore, define the weight vectors for all modules as

W nð Þ ¼ w1 nð Þ;w2 nð Þ; :::;wLf nð Þ� �T ð14Þ

where the length Lf of expanded input signal Xfi nð Þ is defined by
Lf ¼ 3 Nþ 1ð ÞþNpy þ 2 kþ 1ð Þ kþ 2ð Þ. and Npy is the feedback coefficient selection
parameter.

Therefore, the output of the ith modules is a linear combination of the weights and
the extended signals of the ith module as follows

yi nð Þ ¼ WT nð ÞXfi nð Þ ð15Þ

The outputs of each module are then filtered through an adaptive finite impulse
response (FIR) filter to obtain a global estimate. It is easy to see that the output of this
FIR filter is also the output of the PBFLNN nonlinear filter and is defined as follows.

ŷ nð Þ ¼ HT nð ÞY nð Þ ð16Þ

where H nð Þ ¼ h1 nð Þ; h2 nð Þ; :::; hM nð Þ½ �T is the weight vector of the FIR filter, and
Y nð Þ ¼ y1 nð Þ; y2 nð Þ; . . .; yM nð Þ½ �T is the input vector of the FIR filter.

Adaptive Algorithm: In this section, the weight vectors of the modules W(n) and the
FIR filter H(n) are updated to minimize J nð Þ (instantaneous square error). In this way,
we define the cost function as follows

J nð Þ ¼ e2 nð Þ ð17Þ

where the eðnÞ ¼ d nð Þ � ŷ nð Þ ¼ d nð Þ � HT nð ÞY nð Þ is the instantaneous output
error at time n.

Thus, weight vectors of the modules W nð Þ and the FIR filter H nð Þ are updated in
accordance with the rule as follows

H nþ 1ð Þ ¼ H nð Þ � 1
2
lrH nð ÞJ nð Þ ð18Þ

W nþ 1ð Þ ¼ W nð Þ � 1
2
grW nð ÞJ nð Þ ð19Þ
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where rW nð ÞJ nð Þ and rH nð ÞJ nð Þ are the gradient of cost function J nð Þ with respect
to the W nð Þ and the Hi nð Þ, respectively; µ and η are the learning rate. The gradients can
be calculated as follows

rW nð ÞJ nð Þ ¼ @J nð Þ
@W nð Þ ¼ 2e nð ÞHT nð Þ

@ y1 nð Þð Þ
@W nð Þ

..

.

@ yM nð Þð Þ
@W nð Þ

2
664

3
775 ¼ �2eðnÞ

XM

i¼1
hi nð ÞXfi nð Þ ð20Þ

rH nð ÞJ nð Þ ¼ @J nð Þ
@H nð Þ ¼ 2e nð Þ @d nð Þ � HT nð ÞY nð Þ

@H nð Þ ¼ �2e nð ÞY nð Þ ð21Þ

Substituting (21) in (18) we yield the update equation of the weigh vector H nð Þ as

H nþ 1ð Þ ¼ H nð Þþ ge nð ÞY nð Þ ð22Þ

Similarly, substituting (20) in (19) we obtain the update equation of the weigh
vector W nð Þ as

W nþ 1ð Þ ¼ W nð Þþ le nð Þ
XM

i¼1
hi nð ÞXfi nð Þ ð23Þ

Computational Complexity: To evaluate the effectiveness of the proposed method, a
comparison of the computational complexity of the 3 filters (FLNN, BFLNN and
proposed PBFLNN) is summarized in Table 1. Assuming Nf , Nb, and N, is external
input signals of FLNN, BFLNN and proposed PBFLNN, respectively. Ndb and Ny, are
the cross-term and feedback selection parameter of BFLNN; M is the number of
modules.

3 Simulation

To demonstrate the effectiveness of the proposed method, several experiments were
conducted to compare the PBFLNN filter with the FLNN and BFLNN filters in terms
of performance and computational complexity. The parameters of the FLNN, BFLNN

Table 1. Computational complexity of FLNN, BFLNN and PBFLNN filters

Type of
filter

Multiplications Additions

FLNN 2(2B + 1)Nf + 1 2(2B + 1)Nf1
BFLNN 2[3Nb + Ny + Ndb( Ndb + 1)] + 2Ndb + 2 2[3Nb + Ny + Ndb( Ndb + 1)] −

1
PBFLNN 2[3(N + 1) + Npy + 2(k + 1)

(k + 2)] + 2k + 2M + 4
2[3(N + 1) + Npy + 2(k + 1)
(k + 2)] + 2M
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filters and the PBFLNN were selected the same for all experiments. Specifically, the
parameter of FLNN is Nf = 10; B = 3, that of BFLNN is Nb = 10; Ny = 10; Ndb = 9
and that of PBFLNN is N = 4; Npy = 4; k = 3. The function expansion is first-order
type for PBFLNN and BFLNN. The experimental results are all taken by averages on
100 independent runs.

Experiment 1: In this experiment, we conducted the identification of a nonlinear
dynamic model as described below

d nð Þ ¼ d n� 1ð Þ
1þ d2 n� 1ð Þ þ x2 nð Þxðn� 1Þ ð24Þ

where d(n) and x(n) are the observed signal and the input signal of the system. The
performance of the adaptive filters is evaluated based on the mean square error MSE ¼
10 log 10 e2 nð Þð Þ: Assuming that the x(n) is the random sequence, and its range is
chosen as (0,1).

The step-size of the synaptic weigh vector W(n) (the expanded by BFLNN function)
includes linear part µ1 = 0.03; sin (.) cos (.) part µ2 = 0.05; feedback part µ3 = 0.03
and cross-terms part µ4 = 0.04. The step-size of the FIR filter of the PBFLNN is
η = 0.04. Figure 2 shows the averaged MSE performance curves for the random input
signal. It is clear that the performance of the proposed PBFLNN filter is equivalent to
that of BFLNN.

In addition, the computational requirements of the filters are summarized in Table 2.
It is obvious that the computational requirements of the PBFLNN are about 51% less
than that of the BFLNN.
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Fig. 2. Comparison of MSE for random input signal.
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Experiment 2: In this experiment, we carried out to compare identification of a
nonlinear dynamic system as described in [15].

The step-size of the PBFLNN filter are set to η = 0.87, µ1 = 0.79, µ2 = 0.68, and
µ3 = 0.83. The Fig. 3 show the identification results with the corresponding BFLNN,
FLNN and PBFLNN filters. It is clear that the PBFLNN achieves equivalent perfor-
mance to the BFLNN with a lower computational complexity.

Experiment 3: To demonstrate speech signal predictive performance of the proposed
PBFLNN, we use the experiment as described in [14]. The one-step forward prediction
is employed to measure the predicting capability and defined as in [14].

Table. 2 Computational complexity of FLNN, BFLNN and PBFLNN filters

Type of filter Parameter Multiplications Additions

FLNN (Nf = 10, B = 3) 141 139
BFLNN (B = 1, Ndb = 9, Nb = 10, Ny = 10) 280 259
PBFLNN N = 4, k = 3; Npy = 4; B = 1, M = 5 138 128
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Fig. 3. The identification results of the nonlinear dynamic system are based on the PBFLNN,
BFLNN, and FLNN filters
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Fig. 4. (a) Original signal and the corresponding prediction signals, (b) corresponding prediction
error
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Figure 4a illustrates the results of speech prediction using the PBFLNN, BFLNN,
FLNN filters respectively, and the original speech signal. Figure 4b depicts the cor-
respoding predicting errors. The one-step prediction gain of the PBFLNN, BFLNN,
and FLNN are 18.912 dB, 19.324 dB and 17.160dB, respectively. From Fig. 4 and the
value of the one-step prediction, we find that the speech signal prediction ability of the
PBFLNN is equivalent to that of the BFLNN.

4 Conclusion

This paper has proposed a PBFLNN filter, aiming to reduce computation cost and
extend the application scope for the BFLNN. The architecture of the proposed filter is
simpler with a shorter memory length. Computational analysis and simulation results
have shown that the PBFLNN filter significantly reduces computation cost without
degrading performance compared to BFLNN. Furthermore, the simulations have also
demonstrated the potential of the PBFLNN filter for nonlinear dynamic identification
and speech signal prediction.
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